Steck, K., Stubenrauch, C.: Gelling Lyotropic Liquid Crystals with the Organogelator 1,3:2,4-Dibenzylidene-d-sorbitol Part I: Phase Studies and Sol–Gel Transitions. Langmuir. 35, 17132–17141 (2019). https://doi.org/10.1021/acs.langmuir.9b01688.
Steck, K., Preisig, N., Stubenrauch, C.: Gelling Lyotropic Liquid Crystals with the Organogelator 1,3:2,4-Dibenzylidene-d-sorbitol Part II: Microstructure. Langmuir. 35, 17142–17149 (2019). https://doi.org/10.1021/acs.langmuir.9b03346.
Abstract
This study deals with the gelation of lyotropic liquid crystals (LLCs) of the binary system H2O–heptaethylene glycol monododecyl ether (C12E7). The Lα and H1 phases are gelled with the organogelator 1,3:2,4-dibenzylidene-d-sorbitol (DBS). The microstructure of the gelled LLCs is compared to those of the binary counterparts, i.e., the pure LLCs and the binary gel ethylene glycol–DBS. We present the first examples of gelled lyotropic liquid crystals (LLCs) formed by two different ways upon cooling: (1) At a DBS mass fraction of η = 0.015, the gel is formed first, followed by LLC formation. (2) At η = 0.0075, the LLC is formed first, followed by gel formation. Addressing LLC and gel formation in different orders, the influence of the LLC on the gel network and vice versa can be examined. Independent of which structure is formed first, the interlayer spacing dLLC of the LLCs is only slightly larger in the presence of the gel network compared to the nongelled counterparts. Likewise, the influence of the LLCs on the gel fibers is independent of the chronology of the gel and LLC formation. For both ways, the gel fibers are twisted and arranged in bundles parallel to the bilayers of the Lα phase and the cylindrical micelles of the H1 phase. Whereas the twisted structure of the gel fibers in ethylene glycol is retained in the presence of the LLCs, the arrangement in bundles is not observed in the binary gels. In the latter case, randomly distributed single fibers which are also slightly thinner are detected. However, we observed the fiber bundles independent of whether the gel network is formed in the isotropic phase or in the LLC and argue that the difference is caused by different interactions of organogelator DBS with the system H2O–C12E7 than with ethylene glycol. In summary, we found that both the surfactant and the gelator molecules self-assemble in the presence of each other, leading to the coexistence of an LLC and a gel network. This is what is called orthogonal self-assembly.Steck, K., van Esch, J.H., Smith, D.K., Stubenrauch, C.: Tuning gelled lyotropic liquid crystals (LLCs) – probing the influence of different low molecular weight gelators on the phase diagram of the system H2O/NaCl–Genapol LA070. Soft Matter. 15, 3111–3121 (2019). https://doi.org/10.1039/C8SM02330A.
Abstract
Gelled lyotropic liquid crystals (LLCs) are highly tunable multi-component materials. By studying a selection of low molecular weight gelators (LMWGs), we find gelators that form self-assembled gels in LLCs without influencing their phase boundaries. We studied the system H2O/NaCl–Genapol LA070 in the presence of (a) the organogelators 12-hydroxyoctadecanoic acid (12-HOA) and 1,3:2,4-dibenzylidene-d-sorbitol (DBS) and (b) the hydrogelators N,N′-dibenzoyl-l-cystine (DBC) and a tris-amido-cyclohexane derivative (HG1). Visual phase studies and oscillation shear frequency sweeps confirmed that 12-HOA acts as co-surfactant (stabilizing the lamellar Lα phase and destabilizing the hexagonal H1 phase), thus preventing gelation. Conversely, DBS was a potent gelator for LLCs, with the phase boundaries un-influenced by the presence of DBS; gelled lamellar Lα, and softly-gelled hexagonal H1 phases are formed. For the hydrogelator DBC, the LLC phase boundaries were only slightly altered, but no gelled LLCs were formed. For the hydrogelator HG1, however, the phase boundaries were unaffected while gelled lamellar Lα and softly-gelled hexagonal H1 phases were formed. Temperature-dependent rheology measurements demonstrated that by changing the DBS or the HG1 concentration, the sol–gel transition temperature of the gelled lamellar Lα phase can be adjusted such that (a) Tsol–gel is below the Lα-isotropic phase transition (DBS, HG1 mass fraction η = 0.0075) and (b) Tsol–gel is above the gelled Lα-isotropic phase transition (DBS, HG1 η = 0.015). This opens the possibility of temporal materials control by addressing phase transitions in different orders. As this system contains oil and water, both the organogelator DBS and the hydrogelator HG1 can gel these LLCs, but this clearly does not apply to all organogelators/hydrogelators. The study indicates that careful optimization of LMWGs is required to avoid interaction with the surfactant layer and to optimize the Tsol–gel value, which is important for the application of LMWGs in gelled LLCs.